目的 探討一氧化氮(NO)在腫瘤生長、轉移中的作用。
方法 對近年來有關文獻加以綜述。
結果 NO在腫瘤生長轉移中具有雙重作用,一方面NO通過干擾腫瘤細胞代謝,引起DNA損傷,形成高毒性的羥自由基,誘導腫瘤細胞凋亡,介導巨噬細胞和內皮細胞的殺瘤作用,發(fā)揮其抗腫瘤的作用; 另一方面NO通過調節(jié)細胞增殖相關基因的表達,可誘導腫瘤血管形成,而具有促腫瘤生長作用。
結論 選擇性阻斷或誘導NO的合成,使其發(fā)揮抗腫瘤作用,將為腫瘤的治療提供新的思路和方法。
引用本文: 張劍,何生. 一氧化氮在腫瘤生長轉移中的作用. 中國普外基礎與臨床雜志, 2004, 11(6): 561-563. doi: 復制
版權信息: ?四川大學華西醫(yī)院華西期刊社《中國普外基礎與臨床雜志》版權所有,未經授權不得轉載、改編
1. | Rosbe KW, Prazma J, Petrusz P, et al. Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck [J]. Otolaryngol Head Neck Surg, 1995; 113(5)∶541. |
2. | Fujimoto H, Ando Y, Yamashita T, et al. Nitric oxide synthase activity in human lung cancer [J]. Jpn J Cancer Res, 1997; 88(12)∶1190. |
3. | Thomsen LL, Miles DW, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer [J]. Br J Cancer, 1995; 72(1)∶41. |
4. | Jenkins DC, Charles IG, Thomsen LL, et al. Roles of nitric oxide in tumor growth [J]. Proc Natl Acad Sci USA, 1995; 92(10)∶4392. |
5. | Yamamoto T, Terada N, Seiyama A, et al. Increase in experimental pulmonary metastasis in mice by Larginine under inhibition of nitric oxide production by NGnitroLarginine methyl ester [J]. Int J Cancer, 1998; 75(1)∶140. |
6. | Dong SM, Kim KM, Kim SY, et al. Frequent somatic mutations in serine/threonine kinase 11/PeutzJeghers syndrome gene in leftsided colon cancer [J]. Cancer Res, 1998; 58(17)∶3787. |
7. | Gallo O, Masini E, Morbidelli L, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer [J]. J Natl Cancer Inst, 1998; 90(8)∶587. |
8. | Teruo I, Masahiko H, Keiko K, et al. NGnitroLarginine methyl ester inbibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model [J]. Jpn J Cancer Rev, 1997; 88(6)∶801. |
9. | Lala PK, Orucevic A. Role of nitric oxide in tumor progression: lessons from experimental tumors [J]. Cancer Metastasis Rev, 1998; 17(1)∶91. |
10. | Takahashi M, Fukuda K, Ohata T, et al. Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane [J]. Cancer Res. 1997; 57(7)∶1233. |
11. | Tschugguel W, Knogler W, Czerwenka K, et al. Presence of endothelial calciumdependent nitric oxide synthase in breast apocrine metaplasia [J]. Br J Cancer, 1996; 74(9)∶1423. |
12. | Jiang H, Stewart CA, Leu RW. Tumorderived factor synergizes with IFNgamma and LPS, IL2 or TNFalpha to promote macrophage synthesis of TNFalpha and TNF receptors for autocrine induction of nitric oxide synthase and enhanced nitric oxidemediated tumor cytotoxicity [J]. Immunobiology, 1995; 192(5)∶321. |
13. | Li LM, Killoun RG, Adams J, et al. Role of nitric oxide in lysis of tumor cells by cytokineactivate endothelial cells [J]. Cancer Res, 1991; 51(5)∶531. |
14. | Yasushi Y, Akiva M, Takash R, et al. p27 in human lung cancer: differential in smallcell and nonsmallcell carcinoma [J]. Cancer Res, 1998; 58(10)∶1042. |
15. | Zhang J, Dawson VL, Dawson TM, et al. Nitric oxide activation of poly (ADPribose) synthetase in neurotoxicity [J]. Science, 1994; 263(8)∶687. |
16. | Sagar SM, Singh G, Hodson DI, et al. Nitric oxide and anticancer therapy [J]. Cancer Treat Rev, 1995; 21(2)∶159. |
17. | Ho YS, Wang YJ, Lin JK. Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells [J]. Mol Carcinog, 1996; 16(1)∶20. |
18. | Harrison DJ, Howie SEM, Wyllie AH, et al. Lymphocyte death, p53 and the problem of the “undead” cell. In: Kroemer G, Martinez AC, ed. Apoptosis in immunology [M]. Berlin: SpringVerlag, 1995∶123-128. |
- 1. Rosbe KW, Prazma J, Petrusz P, et al. Immunohistochemical characterization of nitric oxide synthase activity in squamous cell carcinoma of the head and neck [J]. Otolaryngol Head Neck Surg, 1995; 113(5)∶541.
- 2. Fujimoto H, Ando Y, Yamashita T, et al. Nitric oxide synthase activity in human lung cancer [J]. Jpn J Cancer Res, 1997; 88(12)∶1190.
- 3. Thomsen LL, Miles DW, Happerfield L, et al. Nitric oxide synthase activity in human breast cancer [J]. Br J Cancer, 1995; 72(1)∶41.
- 4. Jenkins DC, Charles IG, Thomsen LL, et al. Roles of nitric oxide in tumor growth [J]. Proc Natl Acad Sci USA, 1995; 92(10)∶4392.
- 5. Yamamoto T, Terada N, Seiyama A, et al. Increase in experimental pulmonary metastasis in mice by Larginine under inhibition of nitric oxide production by NGnitroLarginine methyl ester [J]. Int J Cancer, 1998; 75(1)∶140.
- 6. Dong SM, Kim KM, Kim SY, et al. Frequent somatic mutations in serine/threonine kinase 11/PeutzJeghers syndrome gene in leftsided colon cancer [J]. Cancer Res, 1998; 58(17)∶3787.
- 7. Gallo O, Masini E, Morbidelli L, et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer [J]. J Natl Cancer Inst, 1998; 90(8)∶587.
- 8. Teruo I, Masahiko H, Keiko K, et al. NGnitroLarginine methyl ester inbibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model [J]. Jpn J Cancer Rev, 1997; 88(6)∶801.
- 9. Lala PK, Orucevic A. Role of nitric oxide in tumor progression: lessons from experimental tumors [J]. Cancer Metastasis Rev, 1998; 17(1)∶91.
- 10. Takahashi M, Fukuda K, Ohata T, et al. Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane [J]. Cancer Res. 1997; 57(7)∶1233.
- 11. Tschugguel W, Knogler W, Czerwenka K, et al. Presence of endothelial calciumdependent nitric oxide synthase in breast apocrine metaplasia [J]. Br J Cancer, 1996; 74(9)∶1423.
- 12. Jiang H, Stewart CA, Leu RW. Tumorderived factor synergizes with IFNgamma and LPS, IL2 or TNFalpha to promote macrophage synthesis of TNFalpha and TNF receptors for autocrine induction of nitric oxide synthase and enhanced nitric oxidemediated tumor cytotoxicity [J]. Immunobiology, 1995; 192(5)∶321.
- 13. Li LM, Killoun RG, Adams J, et al. Role of nitric oxide in lysis of tumor cells by cytokineactivate endothelial cells [J]. Cancer Res, 1991; 51(5)∶531.
- 14. Yasushi Y, Akiva M, Takash R, et al. p27 in human lung cancer: differential in smallcell and nonsmallcell carcinoma [J]. Cancer Res, 1998; 58(10)∶1042.
- 15. Zhang J, Dawson VL, Dawson TM, et al. Nitric oxide activation of poly (ADPribose) synthetase in neurotoxicity [J]. Science, 1994; 263(8)∶687.
- 16. Sagar SM, Singh G, Hodson DI, et al. Nitric oxide and anticancer therapy [J]. Cancer Treat Rev, 1995; 21(2)∶159.
- 17. Ho YS, Wang YJ, Lin JK. Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells [J]. Mol Carcinog, 1996; 16(1)∶20.
- 18. Harrison DJ, Howie SEM, Wyllie AH, et al. Lymphocyte death, p53 and the problem of the “undead” cell. In: Kroemer G, Martinez AC, ed. Apoptosis in immunology [M]. Berlin: SpringVerlag, 1995∶123-128.