【摘要】 輔助性T細(xì)胞17(T-helper type 17,Th17)是一種以分泌白介素-17(IL-17)為特征的輔助性T淋巴細(xì)胞亞型,在自身免疫性疾病中的作用逐漸得到重視。葡萄膜炎是最常見的致盲眼病,一直是眼科研究的熱點和難點。實驗性自身免疫性葡萄膜炎(experimental autoimmune uveoretinitis, EAU)是葡萄膜炎研究的成熟動物模型,有關(guān)Th17和EAU關(guān)系的研究處于起步階段,現(xiàn)就這方面的研究現(xiàn)狀進(jìn)行綜述,為葡萄膜炎的免疫機(jī)制研究提供新思路。
引用本文: 龔文容,陳震,邢怡橋. 輔助性T細(xì)胞17和實驗性自身免疫性葡萄膜炎. 華西醫(yī)學(xué), 2011, 26(2): 301-304. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《華西醫(yī)學(xué)》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357. |
2. | Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748. |
3. | Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240. |
4. | Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141. |
5. | Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238. |
6. | Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007, 448(7152): 484-487. |
7. | Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells[J]. Nature, 2008, 454(7202): 350-352. |
8. | Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest, 2006, 116(5): 1310-1316. |
9. | Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132. |
10. | Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem, 2003, 278(3): 1910-1914. |
11. | Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J]. Semin Immunol, 2007, 19(6): 400-408. |
12. | Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133. |
13. | Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem, 2007, 282(48): 34605-34610. |
14. | Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17[J]. Arthritis Rheum, 2008, 58(1): 98-108. |
15. | Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234. |
16. | Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240. |
17. | Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029. |
18. | Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol, 2006, 7(9): 929-936. |
19. | McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12): 1390-1397. |
20. | Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79. |
21. | Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature, 2007, 445(7128): 648-651. |
22. | Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis[J]. Int Rev Immunol, 2002, 21(2-3): 197-208. |
23. | Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[J]. Nat Med, 2007, 13(6): 711-718. |
24. | Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. J Exp Med, 2008, 205(4): 799-810. |
25. | Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1): 122-127. |
26. | Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology (Oxford), 2009, 48(4): 347-354. |
27. | Brereton CF, Sutton CE, Lalor SJ, et al. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease[J]. J Immunol, 2009, 183(3): 1715-1723. |
28. | Liu X, Lee YS, Yu CR, et al. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases[J]. J Immunol, 2008, 180(9): 6070-6076. |
29. | Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest, 2009, 119(1): 61-69. |
30. | Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology(Oxford), 2009, 48(4): 347-354. |
31. | Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses[J]. Exp Eye Res, 2010, 91(2): 162-170. |
32. | Bain DL, Heneghan AF, Connaghan-Jones KD, et al. Nuclear receptor structure: implications for function[J]. Annu Rev Physiol, 2007, 69: 201-220. |
33. | Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science (NY), 2007, 317(5835): 256-260. |
34. | Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007, 204(8): 1775-1785. |
35. | Lathrop SK, Santacruz NA, Pham D, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population[J]. J Exp Med, 2008, 205(13): 3105-3117. |
36. | Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204(8): 1757-1764. |
37. | Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway[J]. Blood, 2008, 111(3): 1013-1020. |
38. | Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation[J]. Eur J Immuol, 2007, 37(9): 2396-2399. |
39. | Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol, 2008, 181(4): 2277-2284. |
40. | Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis[J]. Br J Ophthalmol, 2010, 94(6): 802-807. |
- 1. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357.
- 2. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748.
- 3. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005, 201(2): 233-240.
- 4. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141.
- 5. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238.
- 6. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature, 2007, 448(7152): 484-487.
- 7. Yang L, Anderson DE, Baecher-Allan C, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells[J]. Nature, 2008, 454(7202): 350-352.
- 8. Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6[J]. J Clin Invest, 2006, 116(5): 1310-1316.
- 9. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.
- 10. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem, 2003, 278(3): 1910-1914.
- 11. Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J]. Semin Immunol, 2007, 19(6): 400-408.
- 12. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
- 13. Wei L, Laurence A, Elias KM, et al. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J]. J Biol Chem, 2007, 282(48): 34605-34610.
- 14. Joosten LA, Abdollahi-Roodsaz S, Heuvelmans-Jacobs M, et al. T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17[J]. Arthritis Rheum, 2008, 58(1): 98-108.
- 15. Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234.
- 16. Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192): 236-240.
- 17. Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029.
- 18. Batten M, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol, 2006, 7(9): 929-936.
- 19. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12): 1390-1397.
- 20. Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57-79.
- 21. Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis[J]. Nature, 2007, 445(7128): 648-651.
- 22. Caspi RR. Th1 and Th2 responses in pathogenesis and regulation of experimental autoimmune uveoretinitis[J]. Int Rev Immunol, 2002, 21(2-3): 197-208.
- 23. Amadi-Obi A, Yu CR, Liu X, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1[J]. Nat Med, 2007, 13(6): 711-718.
- 24. Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. J Exp Med, 2008, 205(4): 799-810.
- 25. Tarrant TK, Silver PB, Chan CC, et al. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis[J]. J Immunol, 1998, 161(1): 122-127.
- 26. Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology (Oxford), 2009, 48(4): 347-354.
- 27. Brereton CF, Sutton CE, Lalor SJ, et al. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease[J]. J Immunol, 2009, 183(3): 1715-1723.
- 28. Liu X, Lee YS, Yu CR, et al. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases[J]. J Immunol, 2008, 180(9): 6070-6076.
- 29. Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice[J]. J Clin Invest, 2009, 119(1): 61-69.
- 30. Yoshimura T, Sonoda KH, Ohguro N, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis[J]. Rheumatology(Oxford), 2009, 48(4): 347-354.
- 31. Hohki S, Ohguro N, Haruta H, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses[J]. Exp Eye Res, 2010, 91(2): 162-170.
- 32. Bain DL, Heneghan AF, Connaghan-Jones KD, et al. Nuclear receptor structure: implications for function[J]. Annu Rev Physiol, 2007, 69: 201-220.
- 33. Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science (NY), 2007, 317(5835): 256-260.
- 34. Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007, 204(8): 1775-1785.
- 35. Lathrop SK, Santacruz NA, Pham D, et al. Antigen-specific peripheral shaping of the natural regulatory T cell population[J]. J Exp Med, 2008, 205(13): 3105-3117.
- 36. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204(8): 1757-1764.
- 37. Elias KM, Laurence A, Davidson TS, et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway[J]. Blood, 2008, 111(3): 1013-1020.
- 38. Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alpha favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation[J]. Eur J Immuol, 2007, 37(9): 2396-2399.
- 39. Xiao S, Jin H, Korn T, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression[J]. J Immunol, 2008, 181(4): 2277-2284.
- 40. Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis[J]. Br J Ophthalmol, 2010, 94(6): 802-807.